Distance Oracles for Vertex-Labeled Graphs

نویسندگان

  • Danny Hermelin
  • Avivit Levy
  • Oren Weimann
  • Raphael Yuster
چکیده

Given a graph G = (V,E) with non-negative edge lengths whose vertices are assigned a label from L = {λ1, . . . , λl}, we construct a compact distance oracle that answers queries of the form: “What is δ(v, λ)?”, where v ∈ V is a vertex in the graph, λ ∈ L a vertex label, and δ(v, λ) is the distance (length of a shortest path) between v and the closest vertex labeled λ in G. We formalize this natural problem and provide a hierarchy of approximate distance oracles that require subquadratic space and return a distance of constant stretch. We also extend our solution to dynamic oracles that handle label changes in sublinear time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Space-efficient path-reporting approximate distance oracles

We consider approximate path-reporting distance oracles, distance labeling and labeled routing with extremely low space requirement, for general undirected graphs. For distance oracles, we show how to break the n log n space bound of Thorup and Zwick if approximate paths rather than distances need to be reported. For approximate distance labeling and labeled routing, we break the previously bes...

متن کامل

Toward a Distance Oracle for Billion-Node Graphs

The emergence of real life graphs with billions of nodes poses significant challenges for managing and querying these graphs. One of the fundamental queries submitted to graphs is the shortest distance query. Online BFS (breadth-first search) and offline pre-computing pairwise shortest distances are prohibitive in time or space complexity for billion-node graphs. In this paper, we study the fea...

متن کامل

Approximate Distance Oracles for Planar Graphs with Improved Query Time-Space Tradeoff

We consider approximate distance oracles for edge-weighted n-vertex undirected planar graphs. Given fixed ǫ > 0, we present a (1 + ǫ)-approximate distance oracle with O(n(log logn)) space and O((log logn)) query time. This improves the previous best product of query time and space of the oracles of Thorup (FOCS 2001, J. ACM 2004) and Klein (SODA 2002) from O(n log n) to O(n(log log n)).

متن کامل

Distance oracles in edge-labeled graphs

A fundamental operation over edge-labeled graphs is the computation of shortest-path distances subject to a constraint on the set of permissible edge labels. Applying exact algorithms for such an operation is not a viable option, especially for massive graphs, or in scenarios where the distance computation is used as a primitive for more complex computations. In this paper we study the problem ...

متن کامل

Improved Distance Oracles and Spanners for Vertex-Labeled Graphs

Consider an undirected weighted graph G = (V,E) with |V | = n and |E| = m, where each vertex v ∈ V is assigned a label from a set of labels L = {λ1, ..., λl}. We show how to construct a compact distance oracle that can answer queries of the form: “what is the distance from v to the closest λ-labeled node” for a given node v ∈ V and label λ ∈ L. This problem was introduced by Hermelin, Levy, Wei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011